8 de fev de 2016

Resolução da integral $\displaystyle \int \frac{1}{ax+b}\ dx$

Nesta postagem veremos que:
\begin{equation*}
\int \frac{1}{ax+b}\ dx = \frac{1}{a}\ln |ax+b| + C
\end{equation*}
onde $a$ e $b$ $\in \mathbb{R}$, sendo $a \neq 0$.


[Família de funções integráveis do tipo $\displaystyle \frac{1}{ax+b}$]

Seja a integral:
\begin{equation*}
I = \int \frac{1}{ax+b}\ dx
\end{equation*}
Para o integrando, fazemos a substituição $u=ax+b$. Assim, $du=a\ dx$ e $\displaystyle dx=\frac{1}{a}du$:
\begin{equation*}
I = \frac{1}{a} \int \frac{1}{u}\ du
\end{equation*}
A integral de $\displaystyle \frac{1}{u}$ é $\ln (u)$. Assim:
\begin{equation*}
I = \frac{1}{a} \cdot \ln|u| + C
\end{equation*}
Mas $u=ax+b$, logo:
\begin{equation*}
I = \frac{1}{a} \cdot \ln|ax+b| + C
\end{equation*}

Exemplo:

Encontrar a área entre a curva $\displaystyle f(x)=\frac{1}{2x+1}$ e o eixo dos $x$, compreendida no intervalo de $[0,1]$.



Para calcularmos a área entre a curva $\displaystyle f(x)=\frac{1}{2x+1}$ e o eixo dos $x$ nos limites $x=0$ e $x=1$, usamos a integral definida:
\begin{equation*}
A = \int_0^1 \frac{1}{2x+1}\ dx
\end{equation*}
Sabendo que:
\begin{equation*}
\int \frac{1}{ax+b}\ dx = \frac{1}{a} \ln|ax+b|
\end{equation*}
fazemos $a=2$ e $b=1$, obtendo:
\begin{equation*}
A = \left[ \frac{1}{2}\ \ln|2x+1| \right]_0^1 = \left[ \frac{1}{2} \ln(3) - \frac{1}{2}\ln (1)\right] \approx 0,54931
\end{equation*}
Assim, a área compreendida entre a curva $f(x)$ e o eixo dos $x$ no limite $[0,1]$ vale aproximadamente $0,54931$ unidades de área.

Imprimir

Veja mais

Lista de resolução de integrais
Integração por substituição
Integração por partes

Imprimir


3 comentários:

  1. Parabéns pelo Post! Só à título de correção, no enunciando do exemplo a função está escrita da seguinte forma:
    $$f(x) = 2x + 1$$
    O correto seria:
    $$f(x) = \frac{1}{\sqrt{2x+1}}$$
    ^^

    ResponderExcluir
    Respostas
    1. Bem observado Leandro. Obrigado por avisar-me. Um abraço!

      Excluir
    2. Na hora de escrever coloquei uma raiz a mais heheh =D

      Excluir

Por favor, leiam antes de comentar:

▪ Escreva um comentário apenas referente ao tema;

▪ Para demais, utilize o formulário de contato;

▪ Comentários ofensivos ou spans não serão publicados;

▪ Desde o dia 23/07/2013, todos os comentários passaram a ser moderados. Para maiores detalhes, veja a nota de moderação aqui;

▪ É possível escrever fórmulas em $\LaTeX$ nos comentários deste blog graças a um script da Mathjax. Para fórmulas inline ou alinhadas à esquerda, escreva a fórmula entre os símbolos de $\$$; Para fórmulas centralizadas, utilize o símbolo duplo $\$\$$.

Por exemplo, a^2 + b^2 = c^2 entre os símbolos de $\$\$$, gera:
$$a^2+b^2=c^2$$
▪ Para visualizar as fórmulas em $\LaTeX$ antes de publicá-las, acessem este link.

Seu comentário é o meu Salário!

Redes Sociais

Arquivo do Blog

Related Posts Plugin for WordPress, Blogger...