10 de jan de 2017

O volume do dodecaedro regular

O dodecaedro é o único poliedro regular cujas faces são pentágonos regulares. É formado por $12$ faces, pentágonos regulares, e em cada vértice concorrem $3$ faces. O prefixo dodeca significa doze em grego. Este sólido representa o universo, porque para Platão o cosmos seria constituído por átomos com a forma de dodecaedros.


Primeiramente, vamos determinar a medida da diagonal do pentágono, que é a face do dodecaedro:



Usando semelhança de triângulos na imagem acima, obtemos:
\begin{equation*}
\frac{CD}{DF} = \frac{AD}{CF} \\
\ \\
\frac{a}{x} = \frac{a + x}{a}\\
\ \\
a^2 = a x + x^2\\
\ \\
x^2 + ax - a^2 = 0
\end{equation*}
Resolvendo esta equação com a fórmula de Bháskara:
\begin{equation*}
x = \frac{-a\pm \sqrt{a^2 + 4a^2}}{2} = \frac{-a\pm \sqrt{5 a^2}}{2} = \frac{-a\pm a\sqrt{5}}{2}\\
\ \\
x_1 = \frac{-a+ a\sqrt{5}}{2} \quad \text{ou} \quad x_2 = \frac{-a- a\sqrt{5}}{2}
\end{equation*}
A única resposta que nos interessa é a raiz $x_1$. Por outro lado, temos que $d=a+ x$, logo:
\begin{equation*}
d = a+ \left(\frac{- a+ a\sqrt{5}}{2}\right)\\
\ \\
d = \frac{2a- a+ a\sqrt{5}}{2}\\
\ \\
d = \frac{a+ a\sqrt{5}}{2}\\
\ \\
d = a\left(\frac{1+\sqrt{5}}{2} \right)\\
\ \\
d = a\ \varphi
\end{equation*}
onde $\varphi$ é o número de ouro.

A decomposição do dodecaedro pode ser feita em um cubo, cujas arestas são as diagonais dos pentágonos das faces, e por outros $6$ sólidos, conforme a imagem abaixo:



Cada um desses $6$ sólidos são representados como:




Podemos decompor este sólido como mostrado abaixo:



Assim, obtemos um prisma de base triangular e uma pirâmide formada pela justaposição dos sólidos opostos:



Pelas imagens acima, obtemos as relações:
\begin{equation*}
d = a + 2x \Rightarrow 2x = d-a \Rightarrow x = \left(\frac{d-a}{2}\right)
\end{equation*}
Aplicando o teorema de Pitágoras no sólido, obtemos:
\begin{equation}
a^2 = x^2 + \ell ^2\\
\ \\
a^2 =\left(\frac{d-a}{2}\right)^2 + \ell^2
\end{equation}
e
\begin{equation}
\ell^2 = h^2 + \left(\frac{d}{2}\right)^2\\
\ \\
\ell^2 = h^2+ \frac{d^2}{4}
\end{equation}
Substituindo $(2)$ em $(1)$:
\begin{equation*}
a^2 - \left(\frac{d-a}{2}\right)^2 = h^2 + \frac{d^2}{4}\\
\ \\
h^2 = a^2  - \left(\frac{d-a}{2}\right)^2 - \frac{d^2}{4}\\
\ \\
h^2= a^2 - \left( \frac{d^2-2ad + a^2}{4} \right) - \frac{d^2}{4}\\
\ \\
h^2 = \frac{4a^2 - d^2 + 2ad -a ^2 - d^2}{4}\\
\ \\
h^2 = \frac{3a^2 - 2d^2 + 2ad}{4}\\
\end{equation*}
\begin{equation}
h^2 = \frac{3a^2}{4} - \frac{d(d-a)}{2}
\end{equation}
Como $d=a\ \varphi$, fazemos:
\begin{equation*}
\frac{d(d-a)}{2} = \frac{a\ \varphi (a\ \varphi - 1)}{2} = \frac{a^2\ \varphi (\varphi - 1)}{2}
\end{equation*}
Como $\displaystyle \varphi = \frac{1 + \sqrt{5}}{2}$, obtemos:
\begin{equation}
\frac{a^2}{2} \left(\frac{1+\sqrt{5}}{2}\right) \left(\frac{1+\sqrt{5}}{2} - a\right) = \frac{a^2}{2}
\end{equation}
Substituindo $(4)$ em $(3)$:
\begin{equation*}
h^2 = \frac{3a^2}{4} - \frac{a^2}{2}\\
\ \\
h^2 = \frac{3a^2 - 2a^2}{4}\\
\ \\
h^2 = \frac{a^2}{4}
\end{equation*}
\begin{equation}
h = \frac{a}{2}
\end{equation}
Agora, podemos calcular os volumes dos sólidos. Vamos calcular o volume do prisma:
\begin{equation*}
V_{Prisma} = \frac{d \cdot h \cdot a}{2} = \frac{\displaystyle a\varphi \cdot \frac{a}{2} \cdot a}{2} = \frac{a^3\ \varphi}{4}
\end{equation*}

Agora, calculamos o volume da pirâmide:
\begin{equation*}
V_{Pirâmide} = \frac{2x \cdot d \cdot h}{3} = \frac{(d-a)\cdot d \cdot a}{2} \cdot \frac{1}{3} = \frac{a^3}{6}
\end{equation*}

E por fim, calculamos o volume do cubo:
\begin{equation*}
V_{Cubo} = c^3 = a^3 \varphi^3
\end{equation*}

O volume do dodecaedro $(V_D)$ é dado pela soma do volume do cubo e seis vezes a soma do volume do prisma e da pirâmide:
\begin{equation*}
V_D = a^3 \varphi^3 + 6\left[ \frac{a^3\varphi}{4} + \frac{a^3}{6} \right]\\
\ \\
V_D = a^3\varphi ^3 + 6\left[ \frac{3a^3 \varphi + 2a^3}{12} \right]\\
\ \\
V_D = a^3 \varphi^3 + \frac{3a^3 \varphi + 2a^3}{2}\\
\ \\
V_D = \frac{2a^3\varphi^3 + 3a^3\varphi + 2a^3}{2}\\
\ \\
V_D = \frac{a^3}{2} \left(2\varphi^3 + 3\varphi + 2 \right)\\
\ \\
V_D = \frac{a^3}{2} \left[2 \left(\frac{1+\sqrt{5}}{2} \right)^3 + 3 \left(\frac{1+\sqrt{5}}{2}\right)+2\right]\\
\ \\
V_D = \frac{a^3}{2} \left[ 2\left(\frac{16+8\sqrt{5}}{8}\right) + \frac{3+3\sqrt{5}}{2} + 2 \right]\\
\ \\
V_D = \frac{a^3}{2} \left[ 4+2\sqrt{5} + \frac{3+3\sqrt{5}}{2} + 2\right]\\
\ \\
V_D = \frac{a^3}{2} \left[ \frac{8+4\sqrt{5} + 3 + 3\sqrt{5} + 4}{2} \right]\\
\ \\
V_D = \frac{a^3}{4} \left( 15 + 7\sqrt{5} \right)
\end{equation*}

Exemplo:

Vamos calcular o volume do dodecaedro cuja aresta mede $1\ u.c.$. Aplicando na fórmula, fazemos $a=1$, obtendo:
\begin{equation*}
V_D = \frac{15 + 7\sqrt{5}}{4} \approx 7,663\ u.v.
\end{equation*}

Referências:

[1] O Volume do dodecaedro regular no blog Fatos Matemáticos, originalmente escrito pelo prof. Paulo Sérgio C. Lino, revisado e reestruturado por Kleber Kilhian

Veja mais:

A origem do termo Número de Ouro
Demonstração do volume de uma pirâmide
Demonstração do volume da esfera

Imprimir


30 de dez de 2016

Retrospectiva: Os $10$ posts mais acessados em $2016$

O blog O Baricentro da Mente, desde sua criação em novembro de $2008$, chegou à marca de $5,3$ milhões de visualizações neste mês de dezembro.


Neste ano de $2016$  o blog teve cerca de $1.300.000$ páginas visualizadas, $10\%$ a mais que o ano anterior (obrigado!), cerca de $250$ comentários e inúmeros e-mails e mensagens pelo formulário de contato. Essas visualizações foram distribuídas nos $472$ artigos contidos no blog, sendo $14$ (apenas) publicados em $2016$.

A fã-page no Facebook, atualmente está com $20.000$ seguidores, sendo que $8.000$ novas curtidas da página foram em $2016$.

Faremos uma retrospectiva de ano destacando os $10$ artigos mais acessados.


$1º$ Lugar: Como determinar o número de diagonais de um polígono convexo de $n$ lados

Total de visualizações: $48.200$
Link do artigo: http://bit.ly/NumeroDiagonaisPoligono

$2º$ Lugar: Como determinar o ângulo interno de um polígono regular

Total de visualizações: $44.500$
Link do artigo: http://goo.gl/5Svm8L

$3º$ Lugar: Método de integração por substituição

Total de visualizações: $27.900$
Link do artigo: https://goo.gl/myqjK8

$4º$ Integração por frações parciais - Parte $1$ - Fatores lineares

Total de visualizações: $25.100$
Link do artigo: https://goo.gl/PVsvYu

$5º$ Lugar: Aplicação de derivada para determinação de máximos e mínimos

Total de visualizações: $22.000$
Link do artigo: http://goo.gl/dz3U2X

$6º$ Lugar: Pontos notáveis de um triângulo

Total de visualizações: $21.000$
Link do artigo: http://goo.gl/tgjHtf

$7º$ Lugar: Soma dos ângulos internos e externos de um polígono convexo

Total de visualizações: $19.000$
Link do artigo: https://goo.gl/6iLC7q

$8º$ Lugar: Fórmula para calcular o tamanho do sapato

Total de visualizações: $17.300$
Link do artigo: http://goo.gl/IwFR86

$9º$ Lugar: Integração por substituição trigonométrica

Total de visualizações: $12.600$
Link do artigo: http://goo.gl/TaMSqc

$10º$ Lugar: Em quanto tempo a luz do Sol atinge a Terra?

Total de visualizações: $11.300$
Link do artigo: https://goo.gl/BstHWF


Veja mais:

Arquivo do blog por ordem de publicação
Arquivo do blog por categorias
Retrospectiva: Os $10$ posts mais acessados em $2015$
Retrospectiva: Os $10$ posts mais acessados em $2014$

Imprimir


7 de dez de 2016

Derivada, usando a definição de limite



O que diz?

Encontrar a taxa de variação instantânea de uma grandeza que varia com o tempo, calcular como seu valor varia em um breve intervalo de tempo e dividi-lo pelo tempo em questão. E então fazer com que esse intervalo se torne tão pequeno quando se queira.

Por que é importante?

Fornece uma base rigorosa para o cálculo, o meio mais importante que os cientistas usam para modelar o mundo natural.

Qual foi a consequência?

O cálculo de tangentes e áreas. Fórmulas para volumes de sólidos e comprimentos de curvas. As leis do movimento de Newton, equações diferenciais. A lei da conservação da energia e da quantidade de movimento. A maior parte da física matemática.

Referências:

[1] 17 Equações Que Mudaram o Mundo – Ian Stewart

Veja mais:

Diferenciação implícita
Algumas observações sobre a notação de derivada
Aplicação de derivadas para determinação de máximos e mínimos

Imprimir


4 de dez de 2016

O duelo de Galois

Durante a madrugada inteira de $30$ de maio de $1832$, o matemático francês Évariste Galois escreveu, escreveu e escreveu. Nas margens do caderno, como um símbolo de seu desespero, anotou: “Não tenho tempo, não tenho tempo”. Ele sabia que estaria morto antes de o Sol nascer, provavelmente com um tiro na testa. Tinha apenas $20$ anos, mas muita coisa a dizer. Especialmente sobre os números que vinha rabiscando de maneira confusa desde os $16$. Equações incompreensíveis na opinião de alguns célebres matemáticos, talvez equivocadas.


Doze anos depois, os rascunhos – e as anotações insanas daquela noite – foram finalmente examinados. O rapazote Galois era um gênio! Sua complexa teoria de grupos abria todo um novo campo para a álgebra. Algo que no século seguinte seria fundamental para o desenvolvimento dos computadores, por exemplo.

Mas em $1832$ nada disso parecia possível. O jovem Évariste estava atolado até o pescoço em uma confusão dos diabos. Ou melhor, diversas confusões. A escalada começou em $1829$, com o suicídio inesperado de seu pai após uma briga feia com inimigos monarquistas. O país estava dividido em facções apaixonadas, opondo católicos a protestantes, republicanos a monarquistas, e Galois resolvera ser republicano até a morte.

Tanto que se envolveu em uma bela enrascada ao fugir da escola para participar das manifestações contra a posse do rei Luís Felipe, em $1830$. Foi expulso e nem se abalou: alistou-se imediatamente na Guarda Nacional, logo desativada por decreto real. Um ano depois foi preso por ameaça ao rei: brandira sua espada numa reunião de republicanos. Ainda voltou à cadeia por usar o uniforme da proscrita Guarda Nacional.

Pior que sua sorte na política, só mesmo na academia. Imberbe, tentava provar que tinha algo a dizer sobre equações. Aos $16$ e aos $18$, tentou sem sucesso entrar na Escola Politécnica, onde circulavam os principais matemáticos franceses da época. A Academia de Ciências fez pior: perdeu duas vezes o relatório com as descobertas de Galois e, quando colocou a mão na terceira versão, reprovou o rapaz. Os juízes simplesmente não entenderam suas ideias e não acreditaram nos resultados registrados.

Enfim, em março de $1832$, o caos político em Paris misturou-se ao pesadelo de uma epidemia de cólera e Galois deu seu último passo torto. Apaixonou-se pela filha de um médico, Stéphanie-Félicie du Motel, que não correspondia ao seu sentimento – e tinha outro pretendente. Bom de gatilho, Pescheux d’Herbinville.

Poucos detalhes sobraram dessa tragédia francesa. O próprio Galois tentou fazer parecer que se tratou de um conluio político para eliminá-lo. Mas também deu a entender que a discussão com o desafiante para um duelo pode ter girado em torno de Stéphanie. Em seus rabiscos aflitos, Évariste a chama de prostituta e deplora a trágica estupidez de ter se envolvido num combate de vida ou morte.

O que se sabe é que na manhã daquela quarta-feira, $30$ de maio de $1832$, Galois foi defender sua honra. Escolheu uma das pistolas, deu $25$ passos, virou-se e... tomou o esperado balaço no estômago. Agonizou no hospital até o dia seguinte. Antes de morrer teria dito a seu irmão: "Não chore, preciso de toda a minha coragem para morrer aos vinte anos". E morreu sem saber que, deixando um legado de apenas $60$ páginas de garranchos, viria a ser considerado não só um dos mais criativos pensadores que a ciência já teve, mas uma das pedras fundamentais na evolução da matemática.

Referências:

[1] Revista Super

Veja mais:

Períodos matemáticos
Emmy Noether e a Álgebra moderna
Teorema da decomposição de polinômios

Imprimir


25 de set de 2016

Resolução da integral $\small \displaystyle \int e^{ax}\ dx$

Nesta postagem, vamos demonstrar que:
\begin{equation*}
\int e^{ax}\ dx = \frac{e^{ax}}{a} + C
\end{equation*}
onde $a$ $\in \mathbb{R}$ e $a$ $\neq$ $0$.



Seja a integral:
\begin{equation*}
I = \int e^{ax}\ dx
\end{equation*}
Para o integrando $e^{ax}$, fazemos a substituição $u=ax$. Assim, $du=adx$ e $dx = \frac{1}{a}du$.

Assim:
\begin{equation*}
I = \int \frac{e^u}{a}\ du\\
\ \\
I= \frac{1}{a} \int e^u\ du
\end{equation*}
A integral de $e^u$ é $e^u$. Assim:
\begin{equation*}
I  = \frac{e^u}{a} + C
\end{equation*}
Mas $u = ax$, logo:
\begin{equation*}
I = \frac{e^{ax}}{a} + C
\end{equation*}

Exemplo $1$:

Calcular a área sob a curva $f(x)=e^{x/4}$ compreendida no intervalo $[0,1]$.



Para calcularmos a área desejada, utilizamos o conceito de integral definida, com limite inferior de integração igual a $0$ e superior igual a $1$. Utilizando o resultado obtido acima, temos que:
\begin{equation*}
A = \int_0^1 e^{x/4}
\end{equation*}
Resolvendo a integral, temos que:
\begin{equation*}
A = \left[ \frac{e^{x/4}}{1/4} \right]_0^1 = \left[ 4\ e^{x/4} \right]_0^1\\
\ \\
A = \left[ 4\ e^{1/4} - 4\ e^{0/4} \right] \\
\ \\
A = 4\ e^{1/4} - 4\\
\ \\
A \approx 1,136
\end{equation*}


Imprimir


Veja mais:

Lista de resolução de integrais
Integração por substituição
Integração por partes

Imprimir


20 de ago de 2016

Sudoku matemático #1

O jogo Sudoku é um quebra-cabeça baseado no posicionamento lógico dos números de $1$ a $9$ em uma grade $9 \times 9$, subdividida em grades $3 \times 3$. Os números devem ser distribuídos de tal forma que os algarismos de $1$ a $9$ apareçam em cada subgrade e em cada fileira (linhas e colunas), sem repeti-los.

O Sudoku apresentado abaixo é uma "versão matemática" do quebra-cabeça. Apesar de utilizar números, o Sudoku não requer o desenvolvimento de aritmética ou álgebra para sua solução. Já nesta versão matemática é necessário sim prévios conhecimentos de Matemática, que variam desde Aritmética simples a conhecimentos de Trigonometria e Cálculo Diferencial e Integral.


Solução: clique aqui.

O puzzle foi projetado por Howard Garns, um arquiteto aposentado de $74$ anos de idade e construtor independente de puzzles, baseando-se, provavelmente, no quadrado latino, uma construção matemática criada pelo suíço Leonhard Euler no século $XVIII$. Garns adicionou ao quadrado latino a sua nova criação como uma grade parcialmente preenchida onde o solucionador deveria preencher os demais quadros vazios. As primeiras publicações do sudoku ocorreram nos Estados Unidos no final dos anos $1970$ na revista norte-americana Math Puzzles and Logic Problems, da editora Dell Magazines, especializada em desafios e quebra-cabeças. A editora deu, ao jogo, o nome de Number Place, que é usado até hoje nos Estados Unidos.

Em $1984$, a Nikoli, maior empresa japonesa de quebra-cabeças, descobriu o jogo e decidiu levá-lo àquele país. O nome sudoku é a abreviação japonesa para a longa frase suuji wa dokushin ni kagiru (数字は独身に限る) que significa "os dígitos devem permanecer únicos" e é uma marca registrada da Nikoli. Em japonês, a palavra é pronunciada [sɯːdokɯ]; em português, pronuncia-se sudoku. Em $1986$, depois de alguns aperfeiçoamentos no nível de dificuldade e na distribuição dos números, o sudoku tornou-se um dos jogos mais vendidos do Japão, onde os jogos numéricos são mais populares que palavras-cruzadas e caça-palavras, que não funcionam muito bem na língua japonesa. Outras editoras japonesas que lançaram o produto referem-se ao jogo como colocando os números, ou como "Nanpure". Algumas editoras não japonesas soletram o título como "su doku".

Apesar de toda a popularidade no Japão, o sudoku não conseguiu atrair a mesma atenção no Ocidente até o fim de $2004$, quando Wayne Gould, um juiz aposentado de Hong Kong, que também era fã de quebra-cabeças e programador de computador, viajou a Londres para convencer os editores do The Times a publicar o sudoku. Gould havia criado um programa de computador que gerava jogos de sudoku com vários níveis de dificuldade e não estava cobrando nada por ele. O Times decidiu arriscar e no dia $12$ de novembro de $2004$ publicou seu primeiro sudoku.

No Brasil, o sudoku é publicado pelas Revistas Coquetel (Ediouro) desde o setembro de $2005$. No ano seguinte, a Editora JBC lançou um manual de como jogar Soduku em mangá (nome dado aos quadrinhos japoneses) intitulado Sudoku & Mangá, roteirizado por Jay Morrison e ilustrado por Atsuhisa Okura. Em Portugal, ele começou a ser publicado em maio de $2005$ pelo jornal Público. Atualmente, com o avanço das tecnologias, o Suduku também se popularizou em aplicativos de celular. (Wikipédia)

Veja mais:

O problema dos quadrados mágicos
O cálculo no Japão
Números perigosos

Imprimir


21 de jul de 2016

Diferenciação implícita

A diferenciação implícita permite-nos encontrar a derivada de uma equação sem que esta esteja resolvida para $y$, mas principalmente quando isolar $y$ é muito trabalhoso, ou mesmo impossível.


Para uma equação tal como $y=x^2-3x+5$, que já está resolvida para $y$ em função de $x$, dizemos que $y$ está expresso diretamente, ou explicitamente em termos de $x$. Já uma equação tal como $xy+4=3x-y$, apesar de poder ser resolvida para $y$ em função de $x$, apresenta $y$ implicitamente como uma função ou mais de $x$.

Definição:

Uma função contínua num intervalo aberto é dita ser implícita numa equação onde figurem as variáveis $x$ e $y$, contanto que, quando $y$ é substituído por $f(x)$, a equação resultante seja verdadeira para todos os valores de $x$ no domínio de $f$.

Diferenciação implícita:

Dada uma equação na qual se estabelece $y$ implicitamente como uma função diferenciável de $x$, para calcularmos $dy / dx$, seguimos:

▪ Derivando ambos os membros da equação em relação a $x$, aplicando o operador $\cfrac{d}{dx}$ aos dois membros da equação, termo a termo.

▪ Considere que $y$ seja uma função de $x$.

▪ Utilize a regra da cadeia, do produto e quociente quando necessário para derivar as expressões nas quais figure $y$.

▪ O resultado será uma equação onde figure não somente $x$ e $y$, mas também $dy/dx$.

▪ Resolva a equação para obter a derivada $dy/dx$.

Quando realizamos uma diferenciação implícita o resultado é frequentemente uma equação que fornece $dy/dx$ em função de $x$ e $y$. Para calcular o valor numérico de $dy/dx$ é necessário conhecer o valor numérico de $y$, além do valor numérico de $x$.

O processo para diferenciação implícita pode apenas ser usado legitimamente se é conhecida a equação em questão que realmente determine $y$ implicitamente como uma função deiferenciável de $x$.

Exemplo $1$:

Como um primeiro exemplo, vamos tomar a equação $x+y-3=x^2$ que apesar de poder facilmente ser resolvida para $y$, vamos aplicar a diferenciação implícita a fim de ilustrar o conceito.

Iniciamos aplicando o operador $\cfrac{d}{dx}$ a ambos os membros da equação:
\begin{equation*}
\frac{d}{dx}\left(x+y-3\right) = \frac{d}{dx} \left(x^2\right)
\end{equation*}
e em seguida, aplicamos o operador $\cfrac{d}{dx}$ termo a termo:
\begin{equation*}
\cfrac{d}{dx}\left( x \right) + \frac{d}{dx} \left( y \right) - \frac{d}{dx} \left( 3 \right) = \frac{d}{dx} \left( x^2 \right)
\end{equation*}
A derivada de $x$ é $1$. A derivada de $y$ nós não sabemos e mantemos o operador diferencial $dy/dx$. A derivada da constante $3$ é zero e a derivada de $x^2$ é $2x$. Assim:
\begin{equation*}
1+\frac{dy}{dx}-0=2x
\end{equation*}
Agora, resolvemos a equação para $dy/dx$, obtendo:
\begin{equation*}
\frac{dy}{dx} = 2x-1
\end{equation*}

Exemplo $2$:

Neste segundo exemplo, tomemos a equação $x^4+y^2=2x$. Para derivarmos implicitamente, aplicamos o operador diferencial $d/dx$ em ambos os lados da equação:
\begin{equation*}
\frac{d}{dx}\left( x^4+y^2 \right) = \frac{d}{dx}\left(2x\right)
\end{equation*}
E derivamos termo a termo:
\begin{equation*}
\frac{d}{dx}\left(x^4\right) + \frac{d}{dx} \left(y^2\right) = \frac{d}{dx} \left(2x\right)
\end{equation*}
A derivada de $x^4$ é $4x^3$. A derivada de $y^2$ não sabemos e mantemos o operador diferencial $d/dx$. A derivada de $2x$ é $2$. Assim:
\begin{equation*}
4x^3 + \frac{d}{dx}\left(y^2\right) = 2
\end{equation*}
Temos que nos atentar ao fato de que no caso da diferenciação de $y^2$, estamos derivando em relação a $x$ e não em relação a $y$. Temos que aplicar a regra da cadeia. O que fazemos é derivar $y^2$ como $2y$ e aplicar o operador $d/dx$ justamente por não sabermos a natureza de $y$.

Veja que se hipoteticamente $y=\cos(x)$, então $y^2=\cos^2(x)$ e a derivada de $\left(y^2\right)^\prime = 2\cos(x)\cdot \left(-\text{sen}(x)\right)$ e não somente $2\cos(x)$. Deste modo, continuamos nosso problema escrevendo:
\begin{equation*}
4x^3 + 2y \cdot \frac{dy}{dx} = 2
\end{equation*}
Agora, isolamos $dy/dx$:
\begin{equation*}
\frac{dy}{dx} = \frac{2-4x^3}{2y} = \frac{1-2x^3}{y}
\end{equation*}

Exemplo $3$:

A regra do produto é utilizada quando em um ou mais termos da equação aparece um produto entre as variáveis $x$ e $y$, tal como $xy$. Vamos considerar a equação $3x^2 +y^3+xy=x+1$. Para derivarmos implicitamente, aplicamos o operador diferencial $d/dx$ em ambos os membros da equação:
\begin{equation*}
\frac{d}{dx} \left(3x^2 + y^3 + xy\right) = \frac{d}{dx} \left(x+1 \right)\\
\ \\
\frac{d}{dx}\left(3x^2 \right) + \frac{d}{dx} \left(y^3 \right) + \frac{d}{dx} \left(xy \right) = \frac{d}{dx} \left(x\right) \frac{d}{dx} \left(1\right)
\end{equation*}
A derivada de $3x^2$ é $6x$. Para a derivada de $y^3$, aplicamos a regra da cadeia, obtendo $\displaystyle 3y^2\left( \frac{d}{dx}~y\right)$. Para a derivada de $xy$, aplicamos a regra do produto, obtendo $\displaystyle 1y + x \frac{dy}{dx}$. A derivada de $x$ é $1$ e da constante $1$ é zero. Assim:
\begin{equation*}
6x +3y^2 \frac{d}{dx}(y) + \left(y+x\frac{dy}{dx}\right) = 1\\
\ \\
6x + 3y^2 \frac{dy}{dx} + y + x\frac{dy}{dx} = 1\\
\ \\
\left(3y^2 + x \right) \frac{dy}{dx} = 1-y-6x\\
\ \\
\frac{dy}{dx} = \frac{1-y-6x}{3y^2+x}
\end{equation*}

Exemplo $4$:

Vamos encontrar a derivada implícita da seguinte equação envolvendo seno e cosseno $3x^2y^3+4~\text{sen}(y)=\cos(x)$.

Iniciamos diferenciando termo a termo ambos os membros da equação:
\begin{equation*}
\frac{d}{dx} \left(3x^2y^3+4~\text{sen}(y)\right) = \frac{d}{dx} cos(x)\\
\ \\
3\frac{d}{dx}\left(x^2y^3\right) + 4\frac{d}{dx}\left(\text{sen}(y)\right) = \frac{d}{dx} \left(\cos(x)\right)
\end{equation*}
Para derivarmos $x^2y^3$, aplicamos a regra do produto e a regra da cadeia. Já para a derivada de $\text{sen}(y)$, aplicamos a regra da cadeia. E para a derivada de $\cos(x)=-\text{sen}(x)$ . Assim:
\begin{equation*}
3\left[ \frac{d}{dx} \left(x^2\right)\right]y^3+3x^2\left[ \frac{d}{dx}\left( y^3 \right) \right]+4\frac{d}{dx}\left[\text{sen}(y)\right] = \frac{d}{dx}\left[ \cos(x) \right]\\
\ \\
6xy^3 + 9x^2y^2\frac{dy}{dx}+4\cos(y)\frac{dy}{dx} = -\text{sen}(x)\\
\ \\
\left(9x^2y^2+4\cos(y)\right)\frac{dy}{dx} = -\text{sen}(x)-6xy^3\\
\ \\
\frac{dy}{dx} = \frac{-\text{sen}(x)-6xy^3}{9x^2y^2+4\cos(y)} = -\frac{\text{sen}(x)+6xy^3}{9x^2+4\cos(y)}
\end{equation*}

Exemplo $5$:

Assim como a regra do produto, podemos utilizar a regra do quociente quando em um ou mais termos da equação aparece um quociente entre as variáveis $x$ e $y$, tal como $x/y$. Vamos considerar a equação $x^3+y-\cfrac{2x}{y}=\ln(y)$. Para derivarmos implicitamente, aplicamos o operador diferencial $d/dx$ em ambos os membros da equação:
\begin{equation*}
\frac{d}{dx}\left( x^3+y+\frac{2x}{y} \right)=\frac{d}{dx} \left(\ln(y)\right)\\
\ \\
\frac{d}{dx}\left(x^3\right)+\frac{d}{dx}\left(y\right)+\frac{d}{dx}\left(\frac{2x}{y}\right) = \frac{1}{y}\left(\ln (y)\right)\\
\ \\
3x^2+\frac{dy}{dx}+\left[ \frac{2 y-2x \frac{dy}{dx}}{y^2} \right] = \frac{1}{y} \frac{dy}{dx}\\
\ \\
3x^2+\frac{dy}{dx}+\frac{2}{y}-\frac{2x}{y^2}\frac{dy}{dx}=\frac{1}{y}\frac{dy}{dx}\\
\ \\
\left( 1-\frac{1}{y}-\frac{2x}{y^2} \right)\frac{dy}{dx} = -3x^2-\frac{2}{y}\\
\ \\
\left(\frac{y^2-y-2x}{y^2} \right)\frac{dy}{dx} = \frac{-3x^2y-2}{y}\\
\ \\
\frac{dy}{dx}=\frac{y^2}{y^2-y-2x}\cdot \frac{(-3x^2y-2)}{y}\\
\ \\
\frac{dy}{dx} = \frac{y(-3x^2y-2)}{y^2-y-2x}\\
\ \\
\frac{dy}{dx} = \frac{y(3x^2y+2)}{2x+y-y^2}

\end{equation*}

Exemplo $6$:

Neste exemplo, vamos utilizar a diferenciação implícita para provar que a regra da potência para expoentes inteiros no cálculo de derivadas, também é válida para expoentes fracionários. Vamos demonstrar que:
\begin{equation*}
\frac{d}{dx} x^n = n x^{n-1}
\end{equation*}
para todo $n = p/q$.

Iniciamos a prova para expoentes fracionários introduzindo $y$ como a variável dependente:
\begin{equation*}
y = x~^{p/q}
\end{equation*}
Elevamos ambos os membros à potência $q$:
\begin{equation*}
y^q = x^p
\end{equation*}
Derivamos implicitamente em relação a $x$, utilizando a regra da potência para expoentes inteiros:
\begin{equation*}
q~u~^{q-1} \frac{dy}{dx} = p~x~^{p-1}\\
\ \\
\frac{du}{dx} = \frac{p}{q} \cdot \frac{x~^{p-1}}{y~^{q-1}}
\end{equation*}
Podemos escrever $y~^{q-1}$ como $y^q \cdot y^{-1} = \cfrac{y^q}{y}$. Assim:
\begin{equation*}
\frac{dy}{dx} = \frac{p}{q} \cdot \frac{x~^{p-1}}{\cfrac{y~^q}{y}}
\end{equation*}
Mas $y^2=x^p$ e $y = x^{p/q}$, assim:
\begin{equation*}
\frac{dy}{dx} = \frac{p}{q} \cdot \frac{x~^{p-1}}{x~^p}\cdot x^{p/q}\\
\ \\
\frac{dy}{dx} = \frac{p}{q} \cdot x^{p-1-p} \cdot x^{p/q}\\
\ \\
\frac{dy}{dx} = \frac{p}{q} \cdot x^{-1} \cdot x^{p/q}\\
\ \\
\frac{dy}{dx} = \frac{p}{q} \cdot x~^{p/q~-1}
\end{equation*}
Finalizando a prova.

Referências:

[1] Cálculo com Geometria Analítica V1 - Simmons
[2] Cálculo V1 - Munem-Foulis

Veja mais:

Funções compostas e a regra da cadeia
Aplicação de derivada na determinação de máximos e mínimos
Aplicação de derivada no estudo de reflexão e refração de um raio de luz

Imprimir


16 de jul de 2016

Resolução da integral $\small \displaystyle \int \frac{x}{ax+b} dx$

Nesta postagem, veremos que:
\begin{equation*}
\int \frac{x}{ax+b}dx = \frac{1}{a^2} \left(ax -b \ln \left|ax+b \right| \right)+C
\end{equation*}
onde $a$ e $b$ são constantes $\in \mathbb{R}$, sendo $a \neq 0$.


Seja a integral:
\begin{equation*}
I = \int \frac{x}{ax+b} dx
\end{equation*}
Reescrevemos o integrando como:
\begin{equation*}
I = \int \left(\frac{1}{a}-\frac{b}{a(ax+b)}\right) dx
\end{equation*}
Integrando termo a termo:
\begin{equation*}
I = \frac{1}{a} \int dx - \frac{b}{a} \int \frac{1}{ax+b} dx
\end{equation*}
Para o integrando $\cfrac{1}{ax+b}$, fazemos a substituição $u = ax+b$. Assim, $du = a~dx$ e $dx = \cfrac{1}{a}du$:
\begin{equation*}
I = \frac{1}{a} \int dx - \frac{b}{a} \int \frac{1}{u}\cdot \frac{1}{a} du \\
\ \\
I = \frac{1}{a} \int dx - \frac{b}{a^2} \int \frac{1}{u} du
\end{equation*}
A integral de $1$ é $x$ e a integral de $\cfrac{1}{u}$ é $\ln (u)$. Assim:
\begin{equation*}
I = \frac{x}{a} - \frac{b}{a^2} \ln (u)+C \\
\ \\
I = \frac{ax - b \ln (u)}{a^2} + C\\
\ \\
I = \frac{1}{a^2}\left( ax-b \ln (u)\right)+C
\end{equation*}
Mas $u = ax+b$, assim:
\begin{equation}
I = \frac{1}{a^2} \left(ax - b \ln |ax+b|\right) + C
\end{equation}

Exemplo $1$:

Encontrar a área entre as curvas $f(x)= \cfrac{x}{x+1}$ e $g(x)=\cfrac{x}{3x+2}$, compreendida no intervalo $[0,1]$.


A área desejada é a diferença entre as áreas das duas curvas. Para o cálculo dessas área, utilizamos o conceito de integral definida com limite inferior igual a $0$ e superior igual a $1$, de modo que:
\begin{equation*}
A = \int_0^1  \frac{x}{x+1}dx - \int_0^1 \frac{x}{3x+2}dx
\end{equation*}
Utilizamos a fórmula obtida em $(1)$.
\begin{equation*}
A = \left[ \left(x - \ln |x+1|\right) \right]_0^1 - \left[ \frac{1}{9} \left(3x - 2 \ln |3x+2|\right)\right]_0^1\\
\ \\
A = \left[ 1- \ln (2) + \ln (1)\right] - \left[ \frac{3-2\ln(5)+2\ln(2)}{9}\right]\\
\ \\
A \approx 0,177~\text{unidades de área}
\end{equation*}

Exemplo $2$:

Encontrar a área compreendida entre as curvas $f(x)=\cfrac{x}{2x+0,2}$ e $g(x)=\cfrac{x}{2-0,25 x}$, sendo o limite inferior igual a $0$ e o limite  superior o ponto de intersecção entre as duas curvas no quadrante onde $x$ e $y$ são positivos.


Começamos escrevendo as funções como:
\begin{equation*}
f(x) = \frac{5x}{10x+1} \quad \text{e} \quad g(x) = \frac{4x}{8-x}
\end{equation*}
Para encontrarmos os ponto de intersecção entre as duas curvas, fazemos $f(x)=g(x)$ e calculamos o valor de $x$:
\begin{equation*}
\frac{5x}{10x+1} = \frac{4x}{8-x}\\
\ \\
5x(8-x) = 4x(10x+1)\\
\ \\
45x^2-36x = 0\\
\ \\
x(45x-36)=0\\
\ \\
x_1=0 \quad \text{e} \quad x_2 = \cfrac{4}{5}
\end{equation*}
Desta forma, os limites de integração serão $0$ e $4/5$, e a área desejada será a diferença das áreas de $f(x)$ e $g(x)$, dada pela diferença das integrais definidas:
\begin{equation*}
A = \int_0^{4/5}\frac{x}{2x+\frac{1}{5}}dx - \int_0^{4/5}\frac{x}{2-\frac{x}{4}} dx
\end{equation*}
Para a primeira integral, temos que $a=2$ e $b=1/5$. Para a segunda integral, temos $a=-1/4$ e $b=2$. Assim, aplicando a fórmula encontrada em $(1)$:
\begin{equation*}
A = \left[ \frac{1}{4}\left(2x-\frac{1}{5}\ln\left|2x+\frac{1}{5}\right| \right) \right]_0^{4/5} - \left[16\left( -\frac{x}{4}-2\ln \left|-\frac{x}{4}+2\right|\right)\right]_0^{4/5}
\end{equation*}
Aplicando os limites em $x$:
\begin{equation*}
A=\left[ \frac{1}{4}\left( \frac{8}{5}-\frac{1}{5}\ln\left(\frac{9}{5}\right) \right) -\frac{1}{4}\left( -\frac{1}{5}\ln\left(\frac{1}{5}\right) \right) \right] - \\
\ \\
\left[ 16\left( -\frac{1}{5}-2\ln\left(\frac{9}{5}\right) \right) - 16\left( -2\ln(2) \right) \right]
\ \\
A \approx 0,1186 ~\text {unidades de área}
\end{equation*}


Imprimir

Veja mais:

Lista de resolução de integrais
Integração por substituição
Integração por partes

Imprimir


10 de jul de 2016

Funções compostas e a regra da cadeia

A regra da cadeia é uma fórmula para a derivada da função composta de duas ou mais funções. Desenvolvida por Gottfried Leibniz, a regra da cadeia teve grande importância para o avanço do cálculo diferencial. Seu desenvolvimento foi devido à mudança de notação, ou seja, ao invés de usar a notação de Newton, Leibniz adotou uma notação referente à tangente, onde a derivada é dada pela diferença dos valores na ordenada dividida pela diferença dos valores na abcissa e onde essa diferença é infinitamente pequena $(dy/dx)$. A partir desta observação, a regra da cadeia passou a permitir a diferenciação de funções diversas cujo argumento é outra função.


Vamos iniciar este estudo com um problema de derivar uma função. Para isso, suponha a função:
\begin{equation}
y = (x^2 + 5x)^3
\end{equation}
e que queremos determinar a sua derivada $dy/dx$.

Uma forma de resolver é usa o Teorema do Binômio para expandir a função no polinômio:
\begin{equation}
y = (x^2+5x)^3 = x^6+15x^5++75x^4+125x^3
\end{equation}
e em seguida, diferenciarmos o polinômio:
\begin{equation}
\frac{dy}{dx} = 6x^5+75x^4+300x^3+375x^2
\end{equation}
Neste caso o processo é fácil, mas trabalhoso. Mas para funções envolvendo expoentes de grau mais alto, tais como $y=(7x^5+19)^{100}$, o processo é inviável.

Outra forma de resolver é fazermos a introdução de uma nova variável auxiliar $u=x^2+5$, de modo que a relação $(1)$ pode ser decomposta em partes mais simples, como:
\begin{equation}
y=u^3 \quad \text{e} \quad u=x^2+5x
\end{equation}
Neste sentido, se substituirmos a expressão de $u$ em $y=u^3$ obtemos uma função composta, também chamada de função de função. Em linhas gerais $y$ é uma função de $u$, onde $u$, por sua vez é uma função de $x$:
\begin{equation}
y=f(u) \quad \text{onde} \quad u=g(x)
\end{equation}
A correspondente função composta é a função:
\begin{equation}
y = f\left(g(x)\right)
\end{equation}

A regra da cadeia

Se $y$ é uma função diferenciável de $u$ e se $u$ é uma função diferenciável de $x$, então $y$ é uma função diferenciável de $x$, de modo que:
\begin{equation}
\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}
\end{equation}
Neste modelo, a regra da cadeia tem aparência de uma identidade algébrica trivial. A notação fracionária de Leibniz para as derivadas sugere que $du$ pode ser cancelado das duas "frações" à direita. Seu conteúdo intuitivo é fácil de entender se pensarmos em derivadas como taxas de variação:

Se $y$ varia $a$ vezes mais rápido que $u$ e se $u$ varia $b$ vezes mais rápido que $x$, então $y$ varia $ab$ vezes mais rápido que $x$.

Voltando à função composta dada em $(1)$ e sua decomposição $(4)$, podemos aplicar a fórmula $(7)$, obtendo:
\begin{matrix}
\displaystyle \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}&=&3u^2(2x+5)=3(x^2+5)^2(2x+5)\\
&=& 6x^5+75x^4+300x^3+375x^2
\end{matrix}
O resultado obtido é o mesmo encontrado em $(3)$. Da mesma forma, podemos calcular facilmente a derivada de $y = (7x^5+19)^{100}$. Escrevemos:
\begin{equation*}
y=u^{100}\quad \text{onde} \quad u=7x^5+19
\end{equation*}
e usamos a fórmula $(7)$, obtendo:
\begin{matrix}
\displaystyle \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}&=&100u^{99}\cdot 35x^4=100(7x^5+19)^{99}\cdot 35x^4\\
&=& 3500x^4(7x^5+19)^{99}
\end{matrix}
Vejam como esses exemplos mostram como a regra da cadeia é um instrumento poderoso para o cálculo.

Demonstração:

Usando uma variação infinitesimal $\Delta x$ na variável independente $x$, esta produz uma variação $\Delta u$ na variável $u$, que por sua vez, produz uma variação $\Delta y$ na variável $y$. Derivabilidade implica em continuidade, assim, $\Delta u \rightarrow 0$ quando $\Delta x \rightarrow 0$. Olhando as definições das três derivadas que queremos relacionar:
\begin{equation}
\frac{dy}{dx}=\lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta x} \quad , \quad
\frac{dy}{du}=\lim_{\Delta u \rightarrow 0}\frac{\Delta y}{\Delta u} \quad , \quad
\frac{du}{dx}=\lim_{\Delta x \rightarrow 0}\frac{\Delta u}{\Delta x}
\end{equation}
podemos completar a demonstração por álgebra simples:
\begin{equation}
\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u}\cdot \frac{\Delta u}{\Delta x}
\end{equation}
e assim:
\begin{equation}

\frac{dy}{dx}=\lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} =\\
\ \\
= \left[  \lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta u} \right] \left[  \lim_{\Delta x \rightarrow 0}\frac{\Delta u}{\Delta x} \right]=\\
\ \\
=\left[  \lim_{\Delta u \rightarrow 0}\frac{\Delta y}{\Delta u} \right] \left[  \lim_{\Delta x \rightarrow 0}\frac{\Delta u}{\Delta x} \right]= \frac{dy}{du}\cdot \frac{du}{dx}

\end{equation}
A falha desta demonstração é na possível divisão por zero. Ao calcularmos $dy/dx$ pela definição dada em $(8)$, sabemos pelo significado dessa fórmula que o incremento $\Delta x$ é infinitesimal, tendendo a zero, mas nunca será igual a zero. Por outro lado, pode ocorrer de $\Delta x$ não induzir uma variação real em $u$, de modo que $\Delta u = 0$. Essa possibilidade invalida as relações $(9)$ e $(10)$.

Podemos contornar este problema usando um artifício matemático. Começamos com a definição de derivada $dy/du$:
\begin{equation}
\frac{dy}{du} = \lim_{\Delta u \rightarrow 0} \frac{\Delta y}{\Delta u}
\end{equation}
Isto é equivalente a:
\begin{equation}
\frac{\Delta y}{\Delta u} = \frac{dy}{du}+\epsilon\\
\ \\
\Delta y = \frac{dy}{du}\Delta u + \epsilon \Delta u
\end{equation}
onde $\epsilon \rightarrow 0$ quando $\Delta u \rightarrow 0$.

Nestas equações supomos que $\Delta u$ é um incremento não-nulo em $u$, mas a última equação é válida mesmo quando $\Delta u = 0$. Dividindo esta por um incremento não-nulo $\Delta x$, obtemos:
\begin{equation}
\frac{\Delta y}{\Delta x} = \frac{dy}{du} \frac{\Delta u}{\Delta x} + \epsilon  \frac{\Delta u}{\Delta x}
\end{equation}
E se fizermos $\Delta x \rightarrow 0$ obtemos a regra da cadeia dada em $(7)$, desde que $\epsilon \rightarrow 0$.

A regra da cadeia é muito importante e indispensável para uma boa parte dos cálculos mais complexos de derivadas. Um exemplo disso foi mostrado no cálculo da derivada de $y = (7x^5+19)^{100}$. Podemos expressar em linhas gerais como:
\begin{equation}
\frac{d}{dx}\left(~~~\right)^n = n\left(~~~\right)^{n-1}~\frac{d}{dx}\left(~~~\right)
\end{equation}
onde qualquer função derivável de $x$ pode ser inserida nos parênteses. Se denotarmos a função por $u$, a fórmula pode ser escrita como:
\begin{equation}
\frac{d}{dx}\left(~u~\right)^n = n\left(~u~\right)^{n-1}~\frac{du}{dx}
\end{equation}

Exemplo $1$:

Aplicar a regra da cadeia para derivar $y=(3x^4+1)^7$.

Usando a fórmula $(15)$ e fazendo $u = 3x^4+1$, obtemos:
\begin{equation*}
\frac{d}{dx}\left(~u~\right)^n = n\left(~u~\right)^{n-1}~\frac{du}{dx}\\
\ \\
\frac{dy}{dx} = 7\left(3x^4+1\right)^{6}~\frac{d}{dx} \left(3x^4+1\right)=7\left(3x^4+1\right)^6\cdot 12x^3
\end{equation*}

Exemplo $2$:

Aplicar a regra da cadeia para derivar $y = (x+x^2-2x^5)^6$.

Usando a fórmula $(15)$ e fazendo $u = x+x-2x^5$, obtemos:
\begin{equation*}
\frac{d}{dx}\left(~u~\right)^n = n\left(~u~\right)^{n-1}~\frac{du}{dx}\\
\ \\\frac{dy}{dx} = 6\left(x+x^2-2x^5\right)^5 \cdot \frac{d}{dx}\left(x+x^2-2x^5\right)\\
\ \\
\frac{dy}{dx} = 6\left(x+x^2-2x^5\right)^5 \cdot \left(1+2x-10x^4\right)
\end{equation*}

Exemplo $3$:

Aplicar a regra da cadeia para derivar $y=(12-x^2)^{-2}$.

Usando a fórmula $(15)$ e fazendo $u = x+x-2x^5$, obtemos:
\begin{equation*}
\frac{d}{dx}\left(~u~\right)^n = n\left(~u~\right)^{n-1}~\frac{du}{dx}\\
\ \\
\frac{dy}{dx} = -2 \left(12-x^2\right)^{-3} \cdot \frac{d}{dx}\left(12-x^2\right)\\
\ \\
\frac{dy}{dx} = -2\left(12-x^2\right)^{-3} \cdot \left(-2x\right) = 4x \left(12-x^2\right)^{-3}
\end{equation*}

Exemplo $4$:

Aplicar a regra da cadeia para derivar $y = \left[\left(3x^4+1\right)^7+1\right]^5$.

Neste caso, precisamos aplicar a fórmula $(15)$ duas vezes:
\begin{equation*}
\frac{dy}{dx} = 5\left[\left(3x^4+1\right)^7+1\right]^4~\frac{d}{dx}\left[\left(3x^4+1\right)^7+1\right]\\
\ \\
= 5\left[\left(3x^4+1\right)^7+1\right]^4 \cdot 7\left(3x^4+1\right)^6~\frac{d}{dx}\left(3x^4+1\right)\\
\ \\
= 5\left[\left(3x^4+1\right)^7+1\right]^4 \cdot 7\left(3x^4+1\right)^6 \cdot 12x^3
\end{equation*}

Exemplo $5$:

Aplicar a regra da cadeia para derivar $\displaystyle  y = \left[\frac{(1-2x)}{(1+2x)} \right]^4$

Neste caso, usamos a regra da cadeia e a regra do quociente:
\begin{equation*}
\frac{dy}{dx} = 4 \left[\frac{(1-2x)}{(1+2x)} \right]^3~\frac{d}{dx}\left(\frac{1-2x}{1+2x}\right)\\
\ \\
= 4\left(\frac{1-2x}{1+2x}\right)^3\cdot \frac{(-2)(1+2x)-(1-2x)(2)}{(1+2x)^2}\\
\ \\
= 4 \left(\frac{1-2x}{1+2x}\right)^3\cdot \frac{(-2-4x-2+4x)}{(1+2x)^2}\\
\ \\
= 4 \left(\frac{1-2x}{1+2x}\right)^3\cdot \frac{-4}{(1+2x)^2}\\
\ \\
= -16\frac{(1-2x)^3}{(1+2x)^5}
\end{equation*}

A regra da cadeia é realmente uma regra para a diferenciação de uma função composta $f \circ g$. Seja $y=f(u)$ e $u=g(x)$, de modo que:
\begin{equation}
y = f(u) = f\left[g(x)\right] = \left(f \circ g\right)(x)
\end{equation}
Desta forma, assumindo que $g$ é diferenciável em $x$ e $f$ é diferenciável em $g(x)$, pela regra da cadeia:
\begin{equation}
\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = f^\prime (u) g^\prime (x) = f^\prime \left[g(x)\right] g^\prime (x)
\end{equation}

Se temos uma função composta $f \circ g$, tal que $(f \circ g)(x) = f\left[g(x)\right]$, chamamos $g$ de função interna e $f$ de função externa. Então, podemos estabelecer a regra da cadeia como sendo: a derivada da composta de duas funções é a derivada da função externa tomada no valor da função interna, multiplicada pela derivada da função interna:
\begin{equation}
\left(f \circ g\right)^\prime (x) = f^\prime \left[g(x)\right] g^\prime (x)
\end{equation}

Exemplo $6$:

Aplicar a regra da cadeia para derivar $y = \text{sen}\left(x^3\right)$

Neste caso, a função externa é a função seno e a função interna é a função $g(x)=x^3$. Temos então que:
\begin{equation*}
\frac{dy}{dx} =  \cos \left(x^3\right)~3x^2 = 3x^2\cos\left(x^3\right)
\end{equation*}

Exemplo $7$:

Aplicar a regra da cadeia para provar que se $f=\cos(x)$, então $f^\prime = - \text{sen}(x)$.

Começamos escrevendo a função cosseno em termos de seno:
\begin{equation*}
\cos(x) = \text{sen}\left(\frac{\pi}{2}-x\right)
\end{equation*}
Neste caso, a função externa é a função seno e a função interna é $\displaystyle g(x) = \frac{\pi}{2}-x$. A derivada da função cosseno é o seno e a derivada da função interna é $g^\prime(x) = -1$. Assim:
\begin{equation*}
\frac{dy}{dx} = \left[ \cos\left(\frac{\pi}{2}-x\right)\right](-1) = -\cos \left(\frac{\pi}{2}-x\right)=-\text{sen}(x)
\end{equation*}

Até o momento consideramos apenas as três variáveis $y$, $u$ e $x$. A regra da cadeia pode ser estendida a mais variáveis. Se adicionarmos uma nova variável $z$, a fórmula dada em $(7)$ pode ser escrita como:
\begin{equation}
\frac{dy}{dz} = \frac{dy}{du} \frac{du}{dx} \frac{dx}{dz}
\end{equation}
onde $y$ depende de $u$, $u$ depende de $x$ e $x$ depende de $z$.

Se adicionarmos uma nova variável $w$, então $z$ dependerá de $w$:
\begin{equation}
\frac{dy}{dw} = \frac{dy}{du} \frac{du}{dx} \frac{dx}{dz} \frac{dz}{dw}
\end{equation}
e assim por diante. Isso mostra o quão poderosa é a regra da cadeia no cálculo de derivadas de funções compostas.

Referências:

[1]  Cálculo com geometria analítica V1 - Simmons
[2] Cálculo V1 - Munem-Foulis
[3] A regra da cadeia no Wikipédia

Veja mais:

Leibniz e as diferenciais
Os mitos Leibnizianos a respeitos das curvas diferenciais
Aplicação de derivadas no estudo sobre a reflexão e refração de um raio de luz

Imprimir


Redes Sociais

Arquivo do Blog

Seguidores